mm-Astronomy: a review of (sub)mm band science and instruments in the ALMA era

Marcella Massardi

INAF- Istituto di Radioastronomia Italian node of European ALMA Regional Centre

EUROPEAN ARC ALMA Regional Centre || Italian SISSA – May 2019

Why should I go (sub)mm?

The (sub)mm band ranges between 30-1000 GHz

- CMB: mm includes the "cosmological windows"
- Synchrotron: peaking at radio bands but still
- significant in the mm regime
- Dust emission: peaking in the submm up to high z (negative k correction) CIB constitutes about 50% of galaxy emissions Of this, 70% is due to dust
- Molecular lines: Molecular clouds are associated to structure formation and dense regions

Extinction is large in molecular clouds at NIR and optical bands but not in (sub)mm

The (sub)mm band ranges between 30-1000 GHz

- CMB: mm includes the "cosmological windows"
- Synchrotron: peaking at radio bands but still
- significant in the mm regime
- Dust emission: peaking in the submm up to high z (negative k correction) CIB constitutes about 50% of galaxy emissions Of this, 70% is due to dust
- Molecular lines: Molecular clouds are associated to structure formation and dense regions

Extinction is large in molecular clouds at NIR and optical bands but not in (sub)mm

The (sub)mm band ranges between 30-1000 GHz

- CMB: mm includes the "cosmological windows"
- Synchrotron: peaking at radio bands but still
- significant in the mm regime
- Dust emission: peaking in the submm up to high z (negative k correction) CIB constitutes about 50% of galaxy emissions Of this, 70% is due to dust
- Molecular lines: Molecular clouds are associated to structure formation and dense regions

Extinction is large in molecular clouds at NIR and optical bands but not in (sub)mm

800-55

The instruments

<u>Outline</u>

Observing instruments

Resolution for diffraction limited telescopes

Single dish antennas or single mirror telescopes work as apertures of diameter a the Resolution for a wavelength λ is $\theta = \lambda / a$

Hence, resolution decreases as the wavelengths decreases. Larger telescopes are needed to reach higher resolutions

For example, Hubble Space Telescope $\lambda \sim 1\mu m$ and a of 2.4 m $\rightarrow \Theta \sim 0.13$ arcsec

For the same resolution at 1mm we need a 2km telescope!

Resolution in interferometers

Interferometers work as arrays of apertures of diameter a at distance B (=baseline >>a) the Resolution for a wavelength λ is $\theta = \lambda/B$.

This is defined as Synthesized Beam and is equivalent to the resolution of a single dish of diameter B.

In the double slit diffraction the pattern is modulated by the single slit envelope, i.e. the response function of an interferometer is modulated in a region of size FOV= λ/a also called Field of View or Primary Beam.

From space small instruments give low resolution from ground larger instruments are possible with **Aperture Synthesis**.

Instruments: bolometers

An incident radiation changes the temperature of the receiver that absorbs it. The temperature variation is a measure of radiation intensity.

Bolometers are intrinsically broadband because the thermal effect is independent of frequency. They are less sensitive to atmospheric variations.

Filters are needed for frequency determination.

They are **usually mounted on single dish**, hence limited in resolution to the antenna diameter. To cover larger areas they are packed in arrays to increase the instantaneous Field Of View.

Instrument	Wavelength	F-o-V	NEFD	FWHM	Confusion
	(microns)	(sq-arcmins)	(mjy)	(arcsec)	(mj y)
SCUBA	450	4.2	400	7.5	0.25
	850	4.5	80	14	0.5
SCUBA-2	450	50	100	7.5	0.25
	850	50	30	14	0.5
Laboca-S	350	4	250	7	0.3
Laboca	850	11	110	18	0.8
SPIRE	250	32	29	18	2.6
	350	32	34	25	3.8
	500	32	37	35	5.4
AzTec	1100	2.4	3.5	5.5	0.06
MAMBO-2	1200	10	30	10	0.2

100 pc at z>1 appear on arcsec scales

Instruments: Coherent receivers

Coherent receivers preserve the phase of the signal: can be mounted on interferometers Furthermore, by mean of heterodyne principles the frequency is shifted to fixed lower values,

without changing any other property of the signal, by combining the received signal with that of a tunable **Local Oscillator**.

This allows to have the whole electronic chain working at the same frequency.

Instruments: interferometers

A coherent combination of reflectors of diameter d at distance B(>>d) give a resolution equivalent to that of a single reflector of diameter B.

The main (primary) beam (FOV) of an antenna is the solid angle where its power pattern (assuming to use it as a transmitter) is larger ($\theta = \lambda/d$). This corresponds to the range where it is more sensitive as a receiver. The power pattern in case of a far away point source is given by the main beam shape with amplitude equal to the source flux (total power).

Instruments: interferometers

Jun Juna Juna Juna

baseline B

0.~~~

A coherent combination of reflectors of diameter d at distance B(>>d) give a resolution equivalent to that of a single reflector of diameter B.

The main (primary) beam (FOV) of an antenna is the solid angle where its power pattern (assuming to use it as a transmitter) is larger ($\theta = \lambda/d$). This corresponds to the range where it is more sensitive as a receiver. The power pattern in case of a far away point source is given by the main beam shape with amplitude equal to the source flux (total power).

After correcting for geometrical delays, allowing the comparison of two points of the same wavefront coming from a far away point source the output of the correlation of two signals is a fringe pattern centered around 0 (total power is lost). **Only the spatial component corresponding to** $\theta = \lambda/B$ **is preserved** Baselines equal to 2D identifies angular scales of the order of $\theta/2$. **The interferometer works as a filter in spatial scales.**

Signals on multiple baselines can be combined to retrieve information on source structure (= aperture synthesis).

The visibility function

The incoming wave induces a electromagnetic $U_2 \propto E \,\mathrm{e}^{\,\mathrm{i}\,\omega\,(t-\tau)}$ $U_1 \propto E \,\mathrm{e}^{\,\mathrm{i}\,\omega t}$ voltage in the antennas (E is the wave amplitude) $\tau = \frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}$ The geometrical delay in the direction s=s0+ds $R(\tau) \propto \frac{E^2}{T} \int^T e^{i\omega t} e^{-i\omega(t-\tau)} dt$ The correlator works as a multiplier and time integrator with output $R(\tau) \propto \frac{\omega}{2\pi} E^2 \int^{2\pi/\omega} \mathrm{e}^{\mathrm{i}\,\omega\tau} \,\mathrm{d}t$ If T>> $2\pi/\omega$ that results in $B \cdot s$ $R(\tau) \propto \frac{1}{2} E^2 \,\mathrm{e}^{\,\mathrm{i}\,\omega\tau}$ В The power induced by the source in terms of I and effective area $\mathrm{d}P = I_{\nu} \cos\theta \,\mathrm{d}\Omega \,\mathrm{d}\sigma \,\mathrm{d}\nu$ from in the direction s ($P \propto E^2$) $= A(s) I_{\nu}(s) \,\mathrm{d}\Omega \,\mathrm{d}\nu$ $r_{12} = A(\mathbf{s}) I_{\nu}(\mathbf{s}) e^{i \omega \tau} d\Omega d\nu$ The output of the correlator integrated over the source is the visibility function $R(\boldsymbol{B}) = \iint A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp \left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s} \right) \right] d\Omega d\nu$ 0.....

The visibility function: properties

Some **visibility function** properties:

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

Amplitude is modulated by the main beam shape
The phase is strictly connected with the source position

The visibility function: properties

Some visibility function properties:

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

- Amplitude is modulated by the main beam shape

- The phase is strictly connected with the source position
- Angular scales on the sky are associated with the size of the projected baseline needed to observe them and the FWHM of the response function width is the synthesized beam λ/B . We can observe more angular scales either 1) changing the baseline

 $B \cdot s$ 2) or averaging the signal from N Antenna couples (N(N-1)/2)

The visibility function: the uv plane

The visibility function: properties

Some visibility function properties:

s0

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

- Amplitude is modulated by the main beam shape

u

- The phase is strictly connected with the source position
- Angular scales on the sky are associated with the size of the projected baseline needed to observe them and the FWHM of the response function width is the synthesized beam λ /B. We can observe more angular scales either
 - 1) changing the baseline
 - 2) or summing the signal from N Antenna couples (N(N-1)/2)
 - 3) or changing the angle towards the target (exploiting the Earth rotation) to obtain a different projection of the same baseline.

The projected baseline is described over the uv plane perpendicular to the direction to the phase center (s0) with u and v towards E and N. The earth rotation generates elliptical loci on the uv plane in 12 hr which ellipticity depends on the telescope latitude and source declination.

The visibility function: the uv plane

V(u,v) and baseline

 $\Theta_{res} \sim \lambda / B_{max}$ where B_{max} is the maximun baseline (uv distance)

Long (u,v) distance: long baseline, measure more compact emission

Small (u,v) distance: short baseline, measure more extended emission

Zero spacing:

missing limit on observable largest scale

 $Θ_{MRS} \sim λ / B_{min}$

u(k **λ**)

The visibility function: properties

Some visibility function properties:

s0

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

- Amplitude is modulated by the main beam shape

u

- The phase is strictly connected with the source position
- Angular scales on the sky are associated with the size of the projected baseline needed to observe them and the FWHM of the response function width is the synthesized beam λ/B. We can observe more angular scales either changing the baseline or summing the signal from N Antenna couples (N(N-1)/2)
 - or changing the angle towards the target (exploiting the Earth rotation) to obtain a different projection of the same baseline.

The projected baseline is described over the uv plane perpendicular to the direction to the phase center (s0) with u and v towards E and N. The earth rotation generates elliptical loci on the uv plane in 12 hr which ellipticity depends on the telescope latitude and source declination.

- Van Cittert-Zernike theorem: the visibility pattern is the Fourier transform of the brightness pattern

Hence the inverse transformation of the uv plane gives the image of the real plane (filtered for the observed angular scales).

Some 2D Fourier Transform Pairs

narrow features transform to wide features (and vice-versa)

From the sky to the image

<i>I</i> (<i>l</i> , <i>m</i>)	(a)	B(l,m) Telescope response to a δ Dirac source in s0	(b)	$I(l,m)^*B(l,m)$	(c)
			66		
	Convo	olution	-		
Map Fourier Real sky		Beam		(Almost) Final image Dirty Map	
Transform $V(u,v)$	(d)	Transform $S(u,v)$	(e)	Transform V(u,v)S(u,v)	(f)
	Multip	olication			
Visibility Fourier domai	n	Baseline projection Sampling Funct	ons ion	What we observe Sampled Visibility	ý

Flux density

The flux density is the power of an electromagnetic wave

passing through an infinitesimal surface

 $\mathrm{d}P = I_{\nu}\cos\theta\,\mathrm{d}\Omega\,\mathrm{d}\sigma\,\mathrm{d}\nu$

 $\begin{array}{l} \mathrm{d} P = \mathrm{power}, \, \mathrm{in} \, \mathrm{watts}, \\ \mathrm{d} \sigma = \mathrm{area} \, \mathrm{of} \, \mathrm{surface}, \, \mathrm{m}^2, \\ \mathrm{d} \nu = \mathrm{bandwidth}, \, \mathrm{in} \, \mathrm{Hz}, \\ \theta & = \mathrm{angle} \, \mathrm{between} \, \mathrm{the} \, \mathrm{normal} \, \mathrm{to} \, \mathrm{d} \sigma \, \mathrm{and} \, \mathrm{the} \, \mathrm{direction} \, \mathrm{to} \, \mathrm{d} \Omega, \\ \mathrm{I}_{\nu} & = \mathrm{brightness} \, \mathrm{or} \, \mathrm{specific} \, \mathrm{intensity}, \, \mathrm{in} \, \mathrm{W} \, \mathrm{m}^{-2} \, \mathrm{Hz}^{-1} \, \mathrm{sr}^{-1}. \end{array}$

The total flux is the integral of dP over the solid angle subtended by the source

$$S_{\nu} = \int_{\Omega_{\rm s}} I_{\nu}(\theta, \varphi) \cos \theta \, \mathrm{d}\Omega,$$

Flux density is measured in Jansky

$$1 \text{ Jy} = 10^{-26} \text{ W m}^{-2} \text{Hz}^{-1} = 10^{-23} \text{ erg s}^{-1} \text{cm}^{-2} \text{Hz}^{-1}$$

Brightness does not depend on distance d, while flux density scales as $1/d^2$

Sensitivity and polarization

The rms noise in the signal for an interferometer is given by:

Sensitivity can be improved by

- getting lower Tsys (= lowering the instrumental noise or

choosing sites with low water vapour levels)

- increasing the collecting area
- increasing the bandwidth and/or the integration time

Receivers are couple of dipoles, so split the signal into **2** polarizations By combining the independent polarizations chains it can reconstruct all the Stokes parameters.

Signal "obstacles"

Column density as function of altitude

Absorption & Attenuation

Light can be absorbed by interacting with a medium and the **photon energy** is transmitted to the molecules or atoms of the medium. Light can be reemitted attenuated or changed in energy.

Molecular transitions and some atomic transitions are excited by mm wavelength and in our atmosphere they can absorb the signals.

Transmissivity is higher the smaller are the obstacles and the less dense is the medium along the line of sight. **Only some transmission bands are available in the submm and only from high and dry sites.**

Signal "obstacles"

Obscuration & Scattering

Light **waves** path is deflected by irregularities in the propagation medium or irregularities on the reflection surface. Obstacles larger than the light wavelength obscurate (reflect) it.

Water Vapour droplets mean size ranges between 10-15 micron and up to 100 micron in clouds.

Antenna Surface irregularities should be smaller than ~1/10 of the observing wavelength (~0.03micron in submm).

Decorrelation

Scattering of light paths has the consequence that two or more receivers looking at the same wavefront receive it in different times and from different direction. If deviations are too large it is no longer possible to reconstruct the original wavefront and compare the signals

Calibration in interferometry: why?

$$V_{ij}^{obs} (A,\phi) = G_{ij} G_{ij}^{V} G_{ij}^{true} (A,\phi)$$
$$G_{ij}^{e} = K_{ij} B_{ij} D_{j} E_{ij} P_{j} T_{ij} F_{ij}$$

where K = geometric compensation, B = Bandpass response, J= electronic gains, D=polarization leakage, E= antenna voltage pattern, P= parallactic angle,T= troposphere effects,F=ionospheric faraday rotation

 $G_i(v,t) = B_i(v)J_i(t)$

Calibration in interferometry: observational strategy in the mm

We need to calibrate A, Φ vs t, v of Visibilities

Deconvolution

$$R(\boldsymbol{B}) = \iint_{\Omega} A(\boldsymbol{s}) I_{\nu}(\boldsymbol{s}) \exp\left[i 2\pi\nu \left(\frac{1}{c} \boldsymbol{B} \cdot \boldsymbol{s}\right)\right] d\Omega d\nu$$

Aims to find a sensible model of I(s) compatible with data without sidelobes
Uses non-linear techniques to interpolate/extrapolate samples of R(u,v) into unsampled regions of the (u,v) plane
Requires knowledge of beam shape A(s) and a priori assumptions about I(s)

One of the most common algorithms in radio astronomy is the algorithm CLEAN (Hogborn 1974)

Deconvolution - Classic CLEAN

Hogbom 1974, Clark 1980, Cotton-Schwab 1984

Basic assumption: each source is a collection of point sources

- . Initializes the residual map to the dirty map and the Clean component list to an empty value
- . Identifies the pixel with the peak of intensity (Imax) in the residual map
- and adds to the clean component list a fraction of Imax = g Imax
- Multiplies the clean component by the dirty beam and subtract it to
- the residual
- Iterates until stopping criteria are reached
- IImax| < multiple of the rms (when rms limited), |Imax| < fraction of
- the brightest source flux (when dynamic range limited)
- Multiplies the clean components by the clean beam an elliptical
- gaussian fitting the central region of the dirty beam
 → restoring

But

.... some uv ranges are sampled more than others

• Gridded visibilities are \rightarrow

V(u,v) = W(u,v) V'(u,v)

*** Weighting effects on the image**

Natural res = 0.29" x 0.23" rms = 0.8 mJy/beam Uniform res = 0.24"x0.17" rms = 3 mJy/beam

Note: Other different final images are possible (uv tapering, uv range selection, multi-scale, wide field) depending on the science case

Interferometers

Long story made short:

Interferometers are arrays of coherent reflectors that can simulate a single dish of size equivalent to the distance between the antennas, that collect the amplitude and phase of the electromagnetic waves emitted on selected angular scales according to the array configuration.

Given an array, sensitivity can be improved with larger bandwidth or longer time on source.

The collected data are not an image yet!!! Radioastronomers call the collected values from each baseline visibilities.

The process to generate an image includes Calibration, Inverse Fourier Transform, Deconvolutions ...

Different weighting schemes generates different images

For more details about interferometry:

- Thompson, Moran, Swensson, "Interferometry and Synthesis in Radio Astronomy"
- Wilson, "Introduction to mm and submm Astronomy" (2009)

The Atacama Large Millimeter Array

ALMA rationale

- The Atacama Large Millimeter Array is a **mm-submm reconfigurable interferometer**
- · Inaugurated March 2013 on the Chajinantor plain (5000m, Chile)
- The design of ALMA is driven by three key science goals:

- The ability to detect spectral line emission from CO or [CII] in a normal galaxy like the Milky Way at a redshift of z=3, in less than 24 hours,

- The ability to image the gas kinematics in protostars and in protoplanetary disks around young Sun-like stars in the nearest molecular clouds (150 pc),

- The ability to provide precise high dynamic range (=|image max/image min|) images at an angular resolution of 0.1 arcsec.

- -> frequency bands, high sensitivity
- -> study of star formation in galaxies up to high redshift, galaxy formation, Lensing, ...
- -> high and low angular resolution, high spectral resolution
- -> study of processes of star and planet formation, stellar evolution and structure, astrochemistry, ...
- -> high angular resolution and sensitivity
- -> galaxy dynamics, AGN core mechanisms, imaging of exoplanets, comets, asteroids, ...

ALMA organization

World wide collaboration

- Europe: ESO (14 countries)
- North America: NRAO (USA, Canada)
- > East Asia: NAOJ (Japan, Taiwan)
- > Chile

Contributors share the observing time

3 Sites in Chile

- > AOS: ALMA Operations Site (5000m): Antennas, Correlator
- OSF: Operations Support Facility (3000m):
 Labs, Antenna Assembly & Maintenance Operators, Astronomers
- SCO: Santiago Central Office:
 - Call for Proposals
 - Running ALMA
 - Data Reduction Pipeline
 - Quality Assessment

ALMA sites

ALMA data flow

Data is collected, reduced and archived. All the "almost" raw data is archived.

Each ARC hosts an archive mirror.

The ALMA Regional Centres (ARCs)

- Interface between JAO and users
- 1 ARC per Partner:
 - NRAO for North America
 - NAOJ for East Asia
 - ESO for Europe (split in 7 nodes + 1CoE)
- Operation support
 - Archive replication
 - Astronomer on duty
 - Software tools
- User support
 - Community formation and outreach
 - Phase 1 (proposal preparation)
 - Phase 2 (scheduling block preparation)
 - Data analysis, Archive mining
 - F2F user support, Helpdesk

Enter the ALMA world through the ALMA Science Portal

http://almascience.eso.org/

Antennas : **50x12m** main array + (**12x7m + 4x12m TP**) ACA Baselines : **15m ->150m-16km** + **9m->50m**

Atacama Compact Array (A C A) 0 ALMA HUBBLE VIT Fifty four 12-meter dishes and twelve 7-meter dishes Four 8.2-meter mirrors One 2.4-meter mirror

Few hr 2 config OVRO

ALMA reconfiguration

ALMA reconfiguration

Main array for compact objects

Model Extended 10^h00^m00^s.2 00^s.0 09^h59^m59^s.9 00^s.0 09^h59^m59^s.9 10^h00^m00^s.2 Compact Compact 12m+ACA -30° 10^h00^m00^s.2 00^s.0 09^h59^m59^s.9 00^s.0 09^h59^m59^s.9 10^h00^m00^s.2

ACA for extended objects

Make your AL MA simulations (Observation Support Tool)

http://almaost.jb.man.ac.uk/

ALMA EUROPE	AN ARC egional Centre UK	E CO CALM	A Observation Suppo	Su ca Re	ubmit a request for a full simulation of ALMA pabilities for your target aceive the results via e-mai				
Array	Instrument	ALMA	Queue Status • Hel	p					
Sky Setup	Source model	OST Library: Central point source	Choose a library source model or	EUROPEAN ARG	ETTO BION				
	Upload a FITS file	Browse	You may upload your own model I	ALMA ALMA Regional Centre UK					
	Declination	-35d00m00.0s	Ensure correct formatting of this s		Job ID: 20110330175645 / Submitted by: casasola@ira.inaf.it				
	Image peak / point flux in mly 1	0.0	Set to 0.0 for no rescaling of source	Overview					
		0.0	Set to 0.0 for no rescaling of source	Click thumbnails to view full-size images. Left: linear colour scale, right: with histogram equalization.					
				Array configuration	Early Science ALMA (Compact Cycle 0, 125 m baseline)				
Observation Setup	Central frequency in GHz	90	The value entered must be within	Source model	All we ever see of stars are their old photographs				
Bandwidth in MHZ	Bandwidth in MHZ	32	Use broad for continuum, narrow						
	Required resolution in arcseconds	1.0	OST will choose config if instrume						
	Pointing strategy	Single \$	Selecting single will apply primary						
	Start hour angle	0.0	Deviation of start of observation fi	Maximum elevation	77.88 decrees				
				Central frequency	90 GHz = Band 3				
	On-source time in hours	3	Maximum duration is 24 hours	Bandwidth	0.032 GHz				
	Number of visite	1	Here exercitizes the choose stime i	Track length	3 hours × 1.0 visits				
	Number of visits	L	now many times the observation i	System temperature	Tsys = Trec + Tsky = 37.0 + 4.42 = 44.15 K				
	Number of polarizations	2 3	This affects the noise in the final n	PWV	0.5 mm				
				Theoretical RMS noise	0.000103323597098 Jy (in naturally-weighted map)				
				Restoring beam (resolution)	Major axis = 6.2.29 arcsec, minor axis = 5.176 arcsec, PA = 55.607 deg				
Corruption	Atmospheric conditions	Good (PWV = 0.5 mm)	Determines level of noise due to v		Data products				
Imaging	Imaging weights	Natural 🗘	This allows a resolution / sensitivit						
	Perform deconvolution?	No (Return dirty image)	Apply the CLEAN algorithm to deco	Your simulated image Download FITS file					

Make your AL MA simulations (CASA simalma, simobserve, and simanalyze)

The task **simobserve** generates a data set with simulated visibilities based on an input model image.

The task **simanalyze** produces a cleaned image based on the simulated visibilities, and it generates some diagnostic images.

CASA also provides the task **simalma** that simplifies the steps needed to simulate ALMA observations that combine data from multiple arrays or multiple configurations.

ALMA bands

	Full Science Capabilities						ompact	Most Extended			
	Band	Frequency (GHz)	Wavelength (mm)	Primary Beam (FOV; ")	Continuum Sensitivity (mJy/ beam)	Angular Spectral Resolu- Sensitivity tion (‴) ∆Tline (K)		Angular Resolution (~)	Spectral Sensitivity ATime (K)		
	1	31.3-45	6.7-9.5	197-137	0.04	13-9 0.006		13-9 0.006 0.1		0.12-0.08	255
	2	67-90	3.3-4.5	92-69	0.06	6-4.4	0.009	0.06-0.04	413		
	3	84-116	2.6-3.6	73-53	0.07	4.8-3.4	0.04	0.045-0.032	430		
	4	125-163	1.8-2.4	49-38	0.06	3.2-2.4	0.048	0.030-0.023	3 330		
	5	163-211	1.4-1.8	38-29	0.11	2.5-1.9	0.06	0.027-0.021	641		
	6	211-275	1.1-1.4	29-22	0.085	1.9-1.5	0.05	0.018-0.014	490		
	7	2 75-3 73	0.8-1.1	22-16	0.15	1.5-1.1 0.08		0.014-0.01	814		
	8	385-500	0.6-0.8	16-12	0.28	1.04-0.8 0.28		0.01-0.008	1900		
	9	602-720	0.4-0.5	10-8.6	1.1	0.66-0.55	0.66-0.55 0.9 0.00		8900		
	10	787-950	0.3-0.4	7.8-6.5	1.2	0.51-0.42 1.6		0.005-0.004	_		
10	23	4 5 6	7	8		9		10			
0.8 - 0.6 - 0.6 -											
0.2											
0.00		200		400 Frequ	Jency / GHz	600		800	1		

ALMA resolution

- Baselines length: 15m ->150m-16km + 9m->50m
- Resolution: 0.2" x (300/freq_GHz)x(1km/max_baseline)
- FOV 12m array: 17"/(300/freq_GHz)
- FOV 7m array: 29"/(300/freq_GHz)

Up to 16km baselines, subarc 40 mas @ 100 GHz, 5 mas @ 900 GHz

$$\theta = k \lambda / D$$

Mosaicking

Largest angular scales than that available to the shortest baseline cannot be observed.

Details in the ranges available to the given baselines can be observed on larger region of the sky by mosaicking the region.

)

3

mm-VLBI with ALMA

Higher and higher resolutions can be obtained with longer baselines. VLBI is a worldwide network of telescopes that matches simultaneous observations in different sites, exploiting the phase information to construct a world-wide interferometer.

At 1 mm and a baseline of 9000 km offers resolution of about 20 microarcseconds

ALMA will be operating in the mm-VLBI since 2017 adding a strength in sensitivity. **Only sources with** flux densities >100 mJy have been observable so far; ALMA reduces it by more than an order of magnitude.

This capability will allow the shadow of the event horizon in the black hole at the Galactic Centre, M the relativistic jet flows in AGN and the dusty winds near stellar surfaces to be imaged

M87 models of different basis of the jet as observed by ALMA+CARMA+SMA+ SMT and by adding also PdBI

u (Gλ)

ALMA sensitivity

Dry site, low pwv, low Tsys, high sensitivity also at submm frequencies

The Science Goal: Sensitivity Calculator

http://almascience.eso.org/call-for-proposals/sensitivity-calculator

Common Paramet	ers											
	Dec		00:00:00.000									
	Polarization		Dual					-				
	Observing Free	bserving Frequency andwidth per Polarization			GHz			-				
	Bandwidth per					GHz			-			
	Water Vapour	ater Vapour		Automatic Choice Manual Choice								
	Column Dens	Column Density			0.913mm (3rd Octile)							
	tau/Tsky		tau0=0.158	3, Ts	sky=39	.538						
	Tsys		157.027 К									
Individual Parame	ters											
	12m Array				7m Ar	ray			Total Powe	er Arra	y	
lumber of Antenn	as 34		9 2					2				
lesolution	0.00000	arcsec		•	5.97	4554 arc	csec		17.923662	17.923662 arcsec		
Sensitivity(rms)	0.00000	Jy		-	0.000	00	Jy	•	0.00000	Jy	-	
(equivalent to)	Infinity	к		- 0	0.000	000 K	к	•	0.00000	к	-	
ntegration Time	0.00000	s	▼ 0.00000 s ▼ 0				0.00000	s	-			
			Integrat	ion	Time	Unit Opt	tion	Aut	omatic		-	
									1			
	Calculate	Integration 1	Time	0	Calcula	ate Sens	sitivit	y				

ALMA spectral properties

The coherent receivers map two freq regions to an Intermediate Frequency by mixing the signal with a Local Oscillator.

The receivers allows up to 4 x 2 GHz-wide Basebands that can be placed in one sideband or distributed between the 2 Sidebands.

A maximum available 8 GHz bandwidth is achieved when the 4 basebands are chosen not to overlap.

ALMA spectral properties

210,00 215,00 1 - 2 FDM FDM FDM			, 225 <u>1</u> 00 , FD	3 M T(230100 4 DM	Each baseband may into one or more spec windows by allocatin of the correlator reso each window.	be divided ctral g a fraction urces to
.5100	1 2 Re	20 00 I I I est Frequency	225,00		230,00		
Mode	Polari-	Bandwidth	Number of	Channel	Velocity		
	zation	per baseband (MHz)	channels per baseband	Spacing (MHz)	width at 300 GHz (km/s)		
7	Dual	1875	3840	0.488	0.48		
8	Dual	938	3840	0.244	0.24		
9	Dual	469	3840	0.122	0.12	Frequency division mo	ode: small bandwidth
10	Dual	234	3840	0.061	0.06		(spectral lines)
11	Dual	117	3840	0.0305	0.03	Time division mode:	large bandwidth
12	Dual	58.6	3840	0.0153	0.015	The division mode.	low resolution
6	Single	58.6	7680	0.00763	0.008		(continuum)
69	Dual	2000	128	15.625	15.6		
71	Single	2000	256	7.8125	7.8		
	2 2 500 Mode 7 8 9 10 11 12 6 6 69 71	2 2 300 2 2 300 2 300 300 300	Polarization Bandwidth per baseband (MHz) 7 Dual 1875 8 Dual 938 9 Dual 234 11 Dual 117 12 Dual 58.6 6 Single 58.6 69 Dual 2000	Sign 225100 225100 2 01 FD 500 22000 225100 500 22000 7 Mode Polari- zation Bandwidth per baseband (MHz) Number of channels per baseband 7 Dual 1875 3840 8 Dual 938 3840 9 Dual 469 3840 10 Dual 234 3840 11 Dual 117 3840 12 Dual 58.6 3840 6 Single 58.6 7680 69 Dual 2000 128 71 Single 2000 256	Number of channels Channel species 5l00 Polari- Bandwidth Number of channels Channel species Mode Polari- Bandwidth Number of channels Specing 7 Dual 1875 3840 0.488 8 Dual 938 3840 0.244 9 Dual 234 3840 0.0122 10 Dual 117 3840 0.0305 12 Dual 58.6 3840 0.0153 6 Single 58.6 7680 0.00763 69 Dual 2000 128 15.625 71 Single 2000 256 7.8125	Spon Deserved Frequency 220,00 225,00 230,00 2 101 3 4 FDM FDM TDM 500 220,00 220,00 Mode Polari- zation Bandwidth per baseband (MHz) Number of channels per baseband Channel Spacing (MHz) Velocity width at 300 GHz (km/s) 7 Dual 1875 3840 0.488 0.48 8 Dual 938 3840 0.244 0.24 9 Dual 469 3840 0.122 0.12 10 Dual 234 3840 0.061 0.06 11 Dual 117 3840 0.0153 0.015 6 Single 58.6 7680 0.00763 0.008 69 Dual 2000 128 15.625 15.6 71 Single 2000 256 7.8125 7.8	Store in the presence of th

Continuum vs spectral line

Digital correlators can be set up to different bandwidth and spectral resolution. Sensitivity refers to a frequency range.

Continuum in mm-submm bands is dominated by dust and synchrotron. Can be observed with large bandwidth and low spectral resolution (broad frequency channels)

Detailed spectra show a very rich chemistry. The narrower are the spectral lines the higher is the spectral resolution requested to sample it.

Hence data products are 4D cubes: Ra, dec, frequency channels, polarization products

C₂H_CN

- ноооон-

C₂H₃CN

C₂H₅CN

(CH₃}O

C₂H₅CN